Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1279-H1290, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517225

RESUMO

The circulating milieu, bioactive molecules in the bloodstream, is altered with aging and interfaces constantly with the vasculature. This anatomic juxtaposition suggests that circulating factors may actively modulate arterial function. Here, we developed a novel, translational experimental model that allows for direct interrogation of the influence of the circulating milieu on age-related arterial dysfunction (aortic stiffening and endothelial dysfunction). To do so, we exposed young and old mouse arteries to serum from young and old mice and young and midlife/older (ML/O) adult humans. We found that old mouse and ML/O adult human, but not young, serum stiffened young mouse aortic rings, assessed via elastic modulus (mouse and human serum, P = 0.003 vs. young serum control), and impaired carotid artery endothelial function, assessed by endothelium-dependent dilation (EDD) (mouse serum, P < 0.001; human serum, P = 0.006 vs. young serum control). Furthermore, young mouse and human, but not old, serum reduced aortic elastic modulus (mouse serum, P = 0.009; human serum, P < 0.001 vs. old/MLO serum control) and improved EDD (mouse and human serum, P = 0.015 vs. old/MLO serum control) in old arteries. In human serum-exposed arteries, in vivo arterial function assessed in the human donors correlated with circulating milieu-modulated arterial function in young mouse arteries (aortic stiffness, r = 0.634, P = 0.005; endothelial function, r = 0.609, P = 0.004) and old mouse arteries (aortic stiffness, r = 0.664, P = 0.001; endothelial function, r = 0.637, P = 0.003). This study establishes novel experimental approaches for directly assessing the effects of the circulating milieu on arterial function and implicates changes in the circulating milieu as a mechanism of in vivo arterial aging.NEW & NOTEWORTHY Changes in the circulating milieu with advancing age may be a mechanism underlying age-related arterial dysfunction. Ex vivo exposure of young mouse arteries to the circulating milieu from old mice or midlife/older adults impairs arterial function whereas exposure of old mouse arteries to the circulating milieu from young mice or young adults improves arterial function. These findings establish that the circulating milieu directly influences arterial function with aging.


Assuntos
Envelhecimento , Endotélio Vascular , Camundongos Endogâmicos C57BL , Rigidez Vascular , Vasodilatação , Animais , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Endotélio Vascular/fisiopatologia , Idoso , Fatores Etários , Camundongos , Aorta/fisiopatologia , Artérias Carótidas/fisiopatologia , Adulto Jovem , Módulo de Elasticidade
3.
Geroscience ; 46(3): 3311-3324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265578

RESUMO

Declines in physiological function with aging are strongly linked to age-related diseases. Lifelong voluntary aerobic exercise (LVAE) preserves physiological function with aging, possibly by increasing cellular quality control processes, but the circulating molecular transducers mediating these processes are incompletely understood. The plasma metabolome may predict biological aging and is impacted by a single bout of aerobic exercise. Here, we conducted an ancillary analysis using plasma samples, and physiological function data, from previously reported studies of LVAE in male C57BL/6N mice randomized to LVAE (wheel running) or sedentary (SED) (n = 8-9/group) to determine if LVAE alters the plasma metabolome and whether these changes correlated with preservation of physiological function with LVAE. Physical function (grip strength, coordination, and endurance) was assessed at 3 and 18 months of age; vascular endothelial function and the plasma metabolome were assessed at 19 months. Physical function was preserved (%decline; mean ± SEM) with LVAE vs SED (all p < 0.05)-grip strength, 0.4 ± 1.7% vs 12 ± 4.0%; coordination, 10 ± 4% vs 73 ± 10%; endurance, 1 ± 15% vs 61 ± 5%. Vascular endothelial function with LVAE (88.2 ± 2.0%) was higher than SED (79.1 ± 2.5%; p = 0.03) and similar to the young controls (91.4 ± 2.9%). Fifteen metabolites were different with LVAE compared to SED (FDR < 0.05) and correlated with the preservation of physiological function. Plasma spermidine, a polyamine that increases cellular quality control (e.g., autophagy), correlated with all assessed physiological indices. Autophagy (LC3A/B abundance) was higher in LVAE skeletal muscle compared to SED (p < 0.01) and inversely correlated with plasma spermidine (r = - 0.5297; p = 0.054). These findings provide novel insight into the circulating molecular transducers by which LVAE may preserve physiological function with aging.


Assuntos
Atividade Motora , Espermidina , Animais , Masculino , Camundongos , Envelhecimento/fisiologia , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Espermidina/metabolismo
4.
Aging Cell ; 23(3): e14060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062873

RESUMO

Cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to age-related arterial dysfunction, in part, by promoting oxidative stress and inflammation, which reduce the bioavailability of the vasodilatory molecule nitric oxide (NO). In the present study, we assessed the efficacy of fisetin, a natural compound, as a senolytic to reduce vascular cell senescence and SASP factors and improve arterial function in old mice. We found that fisetin decreased cellular senescence in human endothelial cell culture. In old mice, vascular cell senescence and SASP-related inflammation were lower 1 week after the final dose of oral intermittent (1 week on-2 weeks off-1 weeks on dosing) fisetin supplementation. Old fisetin-supplemented mice had higher endothelial function. Leveraging old p16-3MR mice, a transgenic model allowing genetic clearance of p16INK4A -positive senescent cells, we found that ex vivo removal of senescent cells from arteries isolated from vehicle- but not fisetin-treated mice increased endothelium-dependent dilation, demonstrating that fisetin improved endothelial function through senolysis. Enhanced endothelial function with fisetin was mediated by increased NO bioavailability and reduced cellular- and mitochondrial-related oxidative stress. Arterial stiffness was lower in fisetin-treated mice. Ex vivo genetic senolysis in aorta rings from p16-3MR mice did not further reduce mechanical wall stiffness in fisetin-treated mice, demonstrating lower arterial stiffness after fisetin was due to senolysis. Lower arterial stiffness with fisetin was accompanied by favorable arterial wall remodeling. The findings from this study identify fisetin as promising therapy for clinical translation to target excess cell senescence to treat age-related arterial dysfunction.


Assuntos
Artérias , Senescência Celular , Flavonóis , Camundongos , Humanos , Animais , Senescência Celular/genética , Suplementos Nutricionais , Inflamação
5.
Mech Ageing Dev ; 217: 111889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007051

RESUMO

Brain aging is associated with reduced cognitive function that increases the risk for dementia. Apigenin is a bioactive plant compound that inhibits cellular aging processes and could protect against age-related cognitive dysfunction, but its mechanisms of action in the brain have not been comprehensively studied. We characterized brain transcriptome changes in young and old mice treated with apigenin in drinking water. We observed improved learning/memory in old treated mice, and our transcriptome analyses indicated that differentially expressed genes with aging and apigenin were primarily related to immune responses, inflammation, and cytokine regulation. Moreover, we found that genes/transcripts that were increased in old vs. young mice but downregulated with apigenin treatment in old animals were associated with immune activation/inflammation, whereas transcripts that were reduced with aging but increased with apigenin were related neuronal function and signaling. We also found that these transcriptome differences with aging and apigenin treatment were driven in part by glial cells. To follow up on these in vivo transcriptome findings, we studied aged astrocytes in vitro, and we found that apigenin reduced markers of inflammation and cellular senescence in these cells. Collectively, our data suggest that apigenin may protect against age-related cognitive dysfunction by suppressing neuro-inflammatory processes.


Assuntos
Apigenina , Encéfalo , Transcriptoma , Animais , Camundongos , Envelhecimento/fisiologia , Apigenina/farmacologia , Encéfalo/efeitos dos fármacos , Inflamação
6.
Am J Physiol Heart Circ Physiol ; 326(1): H123-H137, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921669

RESUMO

Vascular aging, featuring endothelial dysfunction and large elastic artery stiffening, is a major risk factor for the development of age-associated cardiovascular diseases (CVDs). Vascular aging is largely mediated by an excessive production of reactive oxygen species (ROS) and increased inflammation leading to reduced bioavailability of the vasodilatory molecule nitric oxide and remodeling of the arterial wall. Other cellular mechanisms (i.e., mitochondrial dysfunction, impaired stress response, deregulated nutrient sensing, cellular senescence), termed "hallmarks" or "pillars" of aging, may also contribute to vascular aging. Gonadal aging, which largely impacts women but also impacts some men, modulates the vascular aging process. Regular physical activity, including both aerobic and resistance exercise, is a first-line strategy for reducing CVD risk with aging. Although exercise is an effective intervention to counter vascular aging, there is considerable variation in the vascular response to exercise training with aging. Aerobic exercise improves large elastic artery stiffening in both middle-aged/older men and women and enhances endothelial function in middle-aged/older men by reducing oxidative stress and inflammation and preserving nitric oxide bioavailability; however, similar aerobic exercise training improvements are not consistently observed in estrogen-deficient postmenopausal women. Sex differences in adaptations to exercise may be related to gonadal aging and declines in estrogen in women that influence cellular-molecular mechanisms, disconnecting favorable signaling in the vasculature induced by exercise training. The present review will summarize the current state of knowledge on vascular adaptations to regular aerobic and resistance exercise with aging, the underlying mechanisms involved, and the moderating role of biological sex.


Assuntos
Doenças Cardiovasculares , Rigidez Vascular , Pessoa de Meia-Idade , Feminino , Humanos , Masculino , Idoso , Óxido Nítrico , Endotélio Vascular , Envelhecimento/fisiologia , Exercício Físico/fisiologia , Doenças Cardiovasculares/prevenção & controle , Inflamação , Estrogênios , Rigidez Vascular/fisiologia
8.
Hypertension ; 80(10): 2072-2087, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37593877

RESUMO

BACKGROUND: Here, we assessed the role of cellular senescence and the senescence associated secretory phenotype (SASP) in age-related aortic stiffening and endothelial dysfunction. METHODS: We studied young (6-8 mo) and old (27-29 mo) p16-3MR mice, which allows for genetic-based clearance of senescent cells with ganciclovir (GCV). We also treated old C57BL/6N mice with the senolytic ABT-263. RESULTS: In old mice, GCV reduced aortic stiffness assessed by aortic pulse wave velocity (PWV; 477±10 vs. 382±7 cm/s, P<0.05) to young levels (old-GCV vs. young-vehicle, P=0.35); ABT-263 also reduced aortic PWV in old mice (446±9 to 356±11 cm/s, P<0.05). Aortic adventitial collagen was reduced by GCV (P<0.05) and ABT-263 (P=0.12) in old mice. To show an effect of the circulating SASP, we demonstrated that plasma exposure from Old-vehicle p16-3MR mice, but not from Old-GCV mice, induced aortic stiffening assessed ex vivo (elastic modulus; P<0.05). Plasma proteomics implicated glycolysis in circulating SASP-mediated aortic stiffening. In old p16-3MR mice, GCV increased endothelial function assessed via peak carotid artery endothelium-dependent dilation (EDD; Old-GCV, 94±1% vs. Old-vehicle, 84±2%, P<0.05) to young levels (Old-GCV vs. young-vehicle, P=0.98), and EDD was higher in old C57BL/6N mice treated with ABT-263 vs. vehicle (96±1% vs. 82±3%, P<0.05). Improvements in endothelial function were mediated by increased nitric oxide (NO) bioavailability (P<0.05) and reduced oxidative stress (P<0.05). Circulating SASP factors related to NO signaling were associated with greater NO-mediated EDD following senescent cell clearance. CONCLUSIONS: Cellular senescence and the SASP contribute to vascular aging and senolytics hold promise for improving age-related vascular function.


Assuntos
Senoterapia , Doenças Vasculares , Camundongos , Animais , Camundongos Endogâmicos C57BL , Análise de Onda de Pulso , Senescência Celular , Envelhecimento , Artérias , Óxido Nítrico
9.
Nutr Metab (Lond) ; 20(1): 35, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644566

RESUMO

Conjugated linoleic acids (CLAs) are polyunsaturated fatty acids primarily found in dairy products and ruminant animal products such as beef, lamb, and butter. Supplementation of CLAs has recently become popular among athletes due to the variety of health-promoting effects, including improvements in physical performance. Preclinical and some clinical studies have shown that CLAs can reduce inflammation and oxidative stress and favorably modulate body composition and physical performance; however, the results of previously published clinical trials are mixed. Here, we performed a comprehensive review of previously published clinical trials that assessed the role of CLAs in modulating inflammation, oxidative stress, body composition, and select indices of physical performance, emphasizing the molecular mechanisms governing these changes. The findings of our review demonstrate that the effect of supplementation with CLAs on inflammation and oxidative stress is controversial, but this supplement can decrease body fat mass and increase physical performance. Future well-designed randomized clinical trials are warranted to determine the effectiveness of (1) specific doses of CLAs; (2) different dosing durations of CLAs; (3) various CLA isomers, and the exact molecular mechanisms by which CLAs positively influence oxidative stress, inflammation, body composition, and physical performance.

10.
Nutr Metab Cardiovasc Dis ; 33(10): 1836-1848, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482483

RESUMO

BACKGROUND AND AIMS: Grape consumption-associated improvements in cardiovascular health have received significant attention over the last few years; however, major gaps have remained in the meta-evidence related to this topic. This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to explore the effect of whole grapes and its products on blood pressure, endothelial function, heart rate, and pulse rate. METHODS AND RESULTS: Four database (PubMed, Scopus, Web of Sciences, and the Cochrane Library) were searched until the 14th of January 2022. The pooled effect size of interested outcomes was calculated using the random-effects model. Thirty eligible RCTs were identified. Pooled results indicated that compared to the control group, consumption of grape products significantly decreased systolic blood pressure (SBP) (WMD = -3.17 mmHg; 95% CI: -5.36, -0.99 mmHg; P = 0.004; I2 = 64%; P-heterogeneity<0.001); while, vascular cell adhesion molecule-1 (VCAM-1) increased (WMD = 34.11 ng/ml; 95% CI: 0.98, 67.25 ng/ml; P = 0.04; I2 = 2%; P-heterogeneity = 0.4). Although, the certainty of evidence was low and very low, respectively. No significant effect was observed on diastolic blood pressure, endothelial function, heart rate, pulse rate, and soluble intercellular adhesion molecule-1 (sICAM-1). In a subgroup analysis, consumption of whole grape products (raisin and grape powder) induced a significant decrease in SBP (WMD = -2.69 mmHg; 95% CI: -4.81, -0.57; P = 0.01; I2 = 18.1%; P-heterogeneity < 0.001), while grape juice did not. CONCLUSION: The low certainty of evidence from RCTs revealed that consumption of grape products, especially in whole forms, resulted in a small reduction of SBP but did not influence other markers of cardiovascular health. PROSPERO REGISTRATION CODE: CRD42022379231.


Assuntos
Hipertensão , Vitis , Humanos , Pressão Sanguínea , Ensaios Clínicos Controlados Aleatórios como Assunto , Frequência Cardíaca
11.
Front Nutr ; 10: 1191958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090768
12.
Am J Physiol Heart Circ Physiol ; 324(6): H893-H904, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115626

RESUMO

The aorta stiffens with aging in both men and women, which predicts cardiovascular mortality. Aortic wall structural and extracellular matrix (ECM) remodeling, induced in part by chronic low-grade inflammation, contribute to aortic stiffening. Male mice are an established model of aortic aging. However, there is little information regarding whether female mice are an appropriate model of aortic aging in women, which we aimed to elucidate in the present study. We assessed two strains of mice and found that in C57BL/6N mice, in vivo aortic stiffness (pulse wave velocity, PWV) was higher with aging in both sexes, whereas in B6D2F1 mice, PWV was higher in old versus young male mice, but not in old versus young female mice. Because the age-related stiffening that occurs in men and women was reflected in male and female C57BL/6N mice, we examined the mechanisms of stiffening in this strain. In both sexes, aortic modulus of elasticity (pin myography) was lower in old mice, occurred in conjunction with and was related to higher plasma levels of the elastin-degrading enzyme matrix metalloproteinase-9 (MMP-9), and was accompanied by higher numbers of aortic elastin breaks and higher abundance of adventitial collagen-1. Plasma levels of the inflammatory cytokines interferon-γ, interleukin 6, and monocyte chemoattractant protein-1 were higher in both sexes of old mice. In conclusion, female C57BL/6N mice exhibit aortic stiffening, reduced modulus of elasticity and structural/ECM remodeling, and associated increases in MMP-9 and systemic inflammation with aging, and thus are an appropriate model of aortic aging in women.NEW & NOTEWORTHY Our study demonstrates that with aging, female C57BL/6N mice exhibit higher in vivo aortic stiffness, reduced modulus of elasticity, aortic wall structural and extracellular matrix remodeling, and elevations in systemic inflammation. These changes are largely reflective of those that occur with aging in women. Thus, female C57BL/6N mice are a viable model of human aortic aging and the utility of these animals should be considered in future biomedical investigations.


Assuntos
Elastina , Rigidez Vascular , Humanos , Animais , Camundongos , Feminino , Masculino , Metaloproteinase 9 da Matriz , Análise de Onda de Pulso , Camundongos Endogâmicos C57BL , Aorta , Envelhecimento , Inflamação
13.
BMC Endocr Disord ; 23(1): 86, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085813

RESUMO

OBJECTIVE: The aim of the present study was to assess the effect of probiotic/synbiotic supplementation on anthropometric measures in adults with diabetes, independent of body weight. METHODS: PubMed, Scopus, Web of Sciences and the Cochrane Library were searched for randomized controlled trials (RCTs) up until December 14, 2022. The effect sizes were pooled using an inverse-variance random-effects model. The methodological quality of studies as well as the quality of evidence was assessed using standard tools. RESULTS: Thirty-two RCTs met the established inclusion criteria. Overall, compared with the respective control groups, probiotic/synbiotic supplementation resulted in a significant reduction in body weight (weighted mean difference [WMD]: -0.50 kg; 95% CI: -0.83, -0.17; I2 = 79.8%, n = 27 studies]), body mass index (WMD: -0.24 kg/m2; 95% CI: -0.39, -0.09; I2 = 85.7%, n = 30 studies), and waist circumference (WMD: -0.90 cm; 95% CI: -1.13, -0.52; I2 = 0%, n = 11 studies). However, hip circumference and waist to hip ratio were not significantly improved. CONCLUSIONS: Our analysis revealed that probiotic/synbiotic supplementation may assist with weight management in patients with diabetes, especially when consumed at higher doses, in younger adults, and in participants with obesity. However, more studies are needed to elucidate the anti-obesity effects of specific strains of probiotics/synbiotics.


Assuntos
Diabetes Mellitus , Probióticos , Simbióticos , Adulto , Humanos , Peso Corporal , Probióticos/uso terapêutico , Probióticos/farmacologia , Obesidade , Suplementos Nutricionais , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Exp Gerontol ; 173: 112105, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36731386

RESUMO

Age-associated cardiovascular (CV) dysfunction, namely arterial dysfunction, is a key antecedent to the development of CV disease (CVD). Arterial dysfunction with aging is characterized by impaired vascular endothelial function and stiffening of the large elastic arteries, each of which is an independent predictor of CVD. These processes are largely mediated by an excess production of reactive oxygen species (ROS) and an increase in chronic, low-grade inflammation that ultimately leads to a reduction in bioavailability of the vasodilatory molecule nitric oxide. Additionally, there are other fundamental aging mechanisms that may contribute to excessive ROS and inflammation termed the "hallmarks of aging"; these additional mechanisms of arterial dysfunction may represent therapeutic targets for improving CV health with aging. Aerobic exercise is the most well-known and effective intervention to prevent and treat the effects of aging on CV dysfunction. However, the majority of mid-life and older (ML/O) adults do not meet recommended exercise guidelines due to traditional barriers to aerobic exercise, such as reduced leisure time, motivation, or access to fitness facilities. Therefore, it is a biomedical research priority to develop and implement time- and resource-efficient alternative strategies to aerobic exercise to reduce the burden of CVD in ML/O adults. Alternative strategies that mimic or are inspired by aerobic exercise, that target pathways specific to the fundamental mechanisms of aging, represent a promising approach to accomplish this goal.


Assuntos
Doenças Cardiovasculares , Exercício Físico , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doenças Cardiovasculares/prevenção & controle , Inflamação , Endotélio Vascular/metabolismo
15.
J Nutr Sci ; 12: e11, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721721

RESUMO

Nutrition is a key determinant of bone health and attainment of peak bone mass. Excess oxidative stress induces bone loss while increasing antioxidant capacity promotes protective effects on bone. Nuts are rich in antioxidants; therefore, we tested the hypothesis that compared to a control diet high in fat (40 % energy) and cholesterol, diets containing isocaloric amounts of pistachios (8·1 % g/g) or mixed nuts (7·5 % g/g) for 8 weeks would result in greater bone health in male adolescent (3 weeks; a state of continued skeletal growth) Sprague-Dawley rats. We found no difference in bone mechanical properties among groups. Tibial apparent density was ~5 % higher in the pistachio and mixed nuts groups v. control (P < 0·05) with no clear difference detected for the femur. Expressions of genes known to impact bone turnover and serum bone turnover biomarkers were unaffected by either diet relative to control. Serum antioxidant capacity was ~2-fold higher in the pistachio and mixed nuts groups compared with control (P < 0·05) but were similar between groups. Therefore, pistachios and mixed nuts may increase tibial density, in part, due to increasing antioxidant capacity. Longer dietary interventions may be necessary to elicit detectable changes in other bones (e.g. femur) and to detect potential mechanisms for the possible bone protective effects of nuts.


Assuntos
Antioxidantes , Pistacia , Masculino , Ratos , Animais , Nozes , Ratos Sprague-Dawley , Ingestão de Alimentos
16.
Phytother Res ; 37(3): 1153-1166, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642444

RESUMO

This study aimed to evaluate the effect of resveratrol on liver biomarkers in adult participants, using systematic review and meta-analysis of randomized controlled trials. PubMed, Scopus, Web of Science and Cochran Library was searched, up to October 2021. The pooled effects were calculated using a random-effects model and expressed as weighted mean difference and 95% confidence interval. The methodological quality of studies as well as certainty of evidence were assessed by standard tools. Thirty-seven relevant trials were found. Although overall analysis found no significant change, subgroup analysis showed a significant improvement in alanine aminotransferase (ALT; -7.79 U/L) and glutamyl transferase (-6.0 U/L) in patients with liver disorders, and ALT (-2.22 U/L) in younger adults; however, high-dose supplementation (>1,000 mg/day) appeared to increase alkaline phosphatase concentration (+5.07 U/L). ALT also increased in older adults (+2.33 U/L) following resveratrol supplementation. We found resveratrol did not have a significant effect on liver health in the general population. However, resveratrol could be effective in patients with liver disorders. Our findings also suggest that high-dose resveratrol administration and supplementation in older adults should be performed with caution. Further high-quality clinical trials are also needed to firmly establish the clinical efficacy of resveratrol.


Assuntos
Suplementos Nutricionais , Fígado , Humanos , Idoso , Resveratrol/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Biomarcadores
17.
Future Cardiol ; 19(11): 547-566, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36354315

RESUMO

Anthracyclines, chemotherapeutic agents used to treat common forms of cancer, increase cardiovascular (CV) complications, thereby necessitating research regarding interventions to improve the health of cancer survivors. Vascular dysfunction, which is induced by anthracycline chemotherapy, is an established antecedent to overt CV diseases. Potential treatment options for ameliorating vascular dysfunction have largely been understudied. Furthermore, patients treated with anthracyclines have impaired cognitive function and vascular dysfunction is an independent risk factor for the development of mild cognitive impairment. Here, we will focus on: anthracycline chemotherapy associated CV diseases risk; how targeting mechanisms underlying vascular dysfunction may be a means to improve both CV and cognitive health; and research gaps and potential future directions for the field of cardio-oncology.


Cancer and cardiovascular diseases are highly prevalent in the USA and are inter-related issues. Drugs that are used to treat common cancers effectively destroy harmful cancer cells but negatively impact the function of the heart and blood vessels. Cancer patients treated with these drugs are at a high risk of developing problems within the blood vessels that prevent the vessels from dilating properly. Cancer treatments are also associated with impaired memory and brain function later in life. It is important to understand how and why these cancer treatments increase the risk of developing cardiovascular diseases and cognitive impairment. Current research is examining the mechanisms (i.e., potential therapeutic targets) underlying the negative effects of these drugs with the goal of developing interventions and additional treatments to improve the quality of life of cancer survivors.


Assuntos
Doenças Cardiovasculares , Disfunção Cognitiva , Neoplasias , Humanos , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle
18.
Artigo em Inglês | MEDLINE | ID: mdl-36337728

RESUMO

The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.

19.
J Appl Physiol (1985) ; 133(6): 1415-1429, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302155

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide and the risk of developing CVD is markedly increased following anthracycline chemotherapy treatment. Anthracyclines are an essential component of the cancer treatment regimen used for common forms of cancer in male and female children, adolescents, young adults, and older adults. Increased CVD risk with anthracyclines occurs, in part, due to vascular dysfunction-impaired endothelial function and arterial stiffening. These features of vascular dysfunction also play a major role in other common disorders observed following anthracycline treatment, including chronic kidney disease, dementia, and exercise intolerance. However, the mechanisms by which anthracycline chemotherapy induces and sustains vascular dysfunction are incompletely understood. This budding area of biomedical research is termed cardio-oncology, which presents the unique opportunity for collaboration between physicians and basic scientists. This symposium, presented at Experimental Biology 2022, provided a timely update on this important biomedical research topic. The speakers presented observations made at levels from cells to mice to humans treated with anthracycline chemotherapeutic agents using an array of translational research approaches. The speaker panel included a diverse mix of female and male investigators and unique insight from a cardio-oncology physician-scientist. Particular emphasis was placed on challenges and opportunities in this field as well as mechanisms that could be viewed as therapeutic targets leading to novel treatment strategies.


Assuntos
Doenças Cardiovasculares , Neoplasias , Policetídeos , Humanos , Criança , Adulto Jovem , Adolescente , Masculino , Feminino , Camundongos , Animais , Idoso , Antraciclinas/efeitos adversos , Neoplasias/tratamento farmacológico , Doenças Cardiovasculares/induzido quimicamente , Artérias , Pesquisa Translacional Biomédica , Policetídeos/uso terapêutico
20.
J Physiol ; 600(21): 4633-4651, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111692

RESUMO

Vascular dysfunction: develops progressively with ageing; increases the risk of cardiovascular diseases (CVD); and is characterized by endothelial dysfunction and arterial stiffening, which are primarily mediated by superoxide-driven oxidative stress and consequently reduced nitric oxide (NO) bioavailability and arterial structural changes. Interventions initiated before vascular dysfunction manifests may have more promise for reducing CVD risk than interventions targeting established dysfunction. Gut microbiome-derived trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk, and can be suppressed by 3,3-dimethyl-1-butanol (DMB). We investigated whether DMB supplementation could prevent age-related vascular dysfunction in C57BL/6N mice when initiated prior to development of dysfunction. Mice received drinking water with 1% DMB or normal drinking water (control) from midlife (18 months) until being studied at 21, 24 or 27 months of age, and were compared to young adult (5 month) mice. Endothelial function [carotid artery endothelium-dependent dilatation (EDD) to acetylcholine; pressure myography] progressively declined with age in control mice, which was fully prevented by DMB via higher NO-mediated EDD and lower superoxide-related suppression of EDD (normalization of EDD with the superoxide dismutase mimetic TEMPOL). In vivo aortic stiffness (pulse wave velocity) increased progressively with age in controls, but DMB attenuated stiffening by ∼ 70%, probably due to preservation of endothelial function, as DMB did not affect aortic intrinsic mechanical (structural) stiffness (stress-strain testing) nor adventitial abundance of the arterial structural protein collagen. Our findings indicate that long-term DMB supplementation prevents/attenuates age-related vascular dysfunction, and therefore has potential for translation to humans for reducing CV risk with ageing. KEY POINTS: Vascular dysfunction, characterized by endothelial dysfunction and arterial stiffening, develops progressively with ageing and increases the risk of cardiovascular diseases (CVD). Interventions aimed at preventing the development of CV risk factors have more potential for preventing CVD relative to those aimed at reversing established dysfunction. The gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk and can be suppressed by supplementation with 3,3-dimethyl-1-butanol (DMB). In mice, DMB prevented the development of endothelial dysfunction and delayed and attenuated in vivo arterial stiffening with ageing when supplementation was initiated in midlife, prior to the development of dysfunction. DMB supplementation or other TMAO-suppressing interventions have potential for translation to humans for reducing CV risk with ageing.


Assuntos
Doenças Cardiovasculares , Água Potável , Doenças Vasculares , Rigidez Vascular , Camundongos , Humanos , Animais , Superóxidos/metabolismo , Vasodilatação , Análise de Onda de Pulso , Endotélio Vascular/metabolismo , Butanóis/metabolismo , Água Potável/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Doenças Vasculares/metabolismo , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...